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Grid Generation for Three-Dimensional Turbomachinery
Geometries Including Tip Clearance
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An efficient technique for the generation of structured grids for viscous flow computations in turbomachinery
blade rows (two- and three-dimensional), and a specialized embedded //-grid for application, particularly to
tip clearance flows, are presented. The grid generation technique uses a combination of algebraic and elliptic
methods to obtain smooth grids while maintaining strict control over grid spacing and orthogonality at domain
boundaries. A geometric series scheme is used to distribute boundary points. Algebraically generated layers
next to boundaries are used, thus excluding highly clustered regions from the elliptic generation procedure's
domain. The computational efficiency of the elliptic generation procedure is greatly enhanced by the application
of the minimal residual method. The embedded //-grid topology provides good resolution of tip clearance effects.
This topology requires only minor modifications to flow solvers developed for conventional //-grids. The results
obtained with an embedded //-grid are compared to those obtained using a thin-tip approximation. A linear
compressor cascade with tip clearance was used as a test case. Both grid topologies capture the dominant flow
structures associated with the leakage flow. The embedded //-grid provided better quantitative agreement with
the experimental results.

Introduction and Overview of Present Technique

T HE generation of structured grids for the computation
of viscous flows in conventional turbomachinery blade

rows, is considered in this article. Though particular attention
is paid to cases with tip clearance, the grid generation meth-
odology is applicable to other blade rows as well. The gen-
eration of an appropriate grid is an essential element of an
accurate flow solution process. Adequate resolution of im-
portant flow phenomena, such as boundary layers and wakes,
are crucial to obtaining physically representative flow solu-
tions.

Structured grids have the advantage that connectivity arrays
are trivial,1 thus simplifying the calculation of higher deriv-
atives encountered in viscous flow computations. The devel-
opment presented below employs //-grids, but most of the
techniques are also applicable to C- and O-grids. The ap-
proach followed here for the generation of grids for three-
dimensional turbomachinery blade rows (as also used by Beach2)
is to generate several "blade-to-blade" grids on axisymmetric
surfaces, and then interpolate between these grids to define
the three-dimensional grids. The near axisymmetry of tur-
bomachine blade rows and flows make this approach totally
adequate and it is very economical. Interpretation of a flow
computation's results is also simplified by constructing a three-
dimensional grid out of axisymmetric grid "slices."

Four particular aspects are considered: 1) the method used
to distribute the boundary points; 2) the method used to gen-
erate a two-dimensional grid; 3) acceleration of the iteration
process involved in generating the grid; and 4) the use of the
embedded /f-grid topology to resolve tip clearance flows.
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The grid generation process is greatly simplified by deter-
mining the locations of grid points on the boundaries prior to
the generation of the internal grid. Elliptic grid generation
schemes can then be formulated as Dirichlet problems. Sorenson3

uses a weighted equidistribution scheme to distribute boundary
points. Other common approaches are the use of cosine4 and
hyperbolic tangent2 functions. A new distribution scheme based
on a geometric series, which provides better control than the
cosine and hyperbolic tangent schemes, (but is easier to use than
equidistribution schemes) is presented here.

To maintain the accuracy of difference approximations of
the derivatives in flow solvers, structured grids have to be
smooth, i.e., the local radius of curvature of a grid line must
be large compared to the local length of grid segments. But
the smoothest grids will, in general, not provide sufficient grid
resolution in regions of large gradients of flow properties,
e.g., at leading and trailing edges, and in boundary layers and
wakes. Another consideration is orthogonality. In turbulent
flow analyses, the application of turbulence models are greatly
simplified when the grid lines intersect the solid boundaries
at right angles. Although orthogonality of the grid over the
whole domain would be advantageous, it is not possible to
enforce orthogonality in periodic grids for blade rows with
nonzero inlet or outlet angles.

The boundary-value problem nature of grid generation for
internal flows (the domain is completely enclosed by the
boundaries) and the smoothness requirement, make elliptic
grid generation methods a natural choice.1 Accordingly, such
methods are used in a number of grid generation schemes.2'3'5'6
The smoothing properties are modified in different ways to
obtain the required resolution in regions of large flow gra-
dients. Sorenson3 and Shieh6 used the source terms in the
Poisson equations to control the grid spacing and orthogo-
nality near the boundaries. In the experience of the present
authors and other workers,2 the amount of control that can
be obtained by the source terms is inadequate for cascade
grids with thick leading and trailing edges. The extremely
small grid spacings at the solid boundaries required for com-
putations using low Reynolds number turbulence models, can
also not be reliably produced solely through the use of source
terms.

Some researchers totally abandon the use of a single-block
grid structure,7 deeming their use for turbomachinery geo-
metries impractical. With suitable modifications to elliptic
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grid generators, however, suitable grids can be generated.
One approach to overcome the inadequacies of elliptic grid
generators, while retaining their useful properties, is to com-
bine the elliptic methods with algebraic methods. Beach2 gen-
erates an algebraic grid interactively, and then uses the elliptic
grid generation equations to smooth selected regions. An-
other approach is followed in the method presented here. In
this approach algebraic methods are only used to generate
layers of grid points near solid boundaries, while the remain-
der of the grid is generated using the elliptic grid generation
approach. The elliptic generator is also implemented to smooth
the interface between the algebraic and elliptic grid regions.

Another disadvantage of elliptic grid generation methods,
is the computational effort required. The nonlinearity of the
equations give rise to the use of iterative solution techniques.
Additionally, the generation of a grid on a new geometry
typically requires a number of trials and revisions before a
suitable grid is obtained. Therefore, the time required to gen-
erate a grid for a particular set of parameters is important.
Full matrix inversion for large grids is impractical, while stan-
dard alternating direction implicit (ADI) or line relaxation
schemes converge slowly. The minimal residual method is
therefore employed in the scheme presented here to reduce
computation time. Very significant CPU time improvements
are obtained in this way.

The grid generation approach introduced above is appli-
cable to a wide array of grid generation topologies and ap-
plications. The resolution of tip clearance flows, however,
require specialized grids. The abrupt transition from the blade
passage to the tip gap, with the sharp corners at the blade tip
and the large gradients in flow properties, limits the usefulness
of typical H- or C-grids. A commonly used approach, some-
times called the "thin blade approximation," is to cusp the
blade tip.8'9 This approach is reasonable for thin blade tips
and is suitable for modeling the gross effects of tip clearance
flows, though the tip geometry is not modeled precisely.
Nonsmooth grid lines in the tip region also locally reduce the
accuracy of the solution.

Better modeling of the tip gap has been obtained by embed-
ding an 0-grid within the main grid in the tip gap.2 This
method provides good resolution and accurate modeling of
the actual geometry, but introduces singularities in the grid
where the innermost line of the 0-grid doubles back near the
leading and trailing edges. The solution algorithm for such
an embedded O-grid must further be formulated for the block-
structured nature of the grid. To overcome these difficulties,
an embedded H-grid topology is presented. This topology
eliminates the singularities, while retaining the advantages of
good resolution and accurate modeling of the geometry. In
addition, the embedded H-grid topology does not require a
block-structured solution algorithm.

Distribution of Boundary Points
The scheme used to distribute the grid points on the bound-

aries has a profound influence on the control over the accuracy
with which the grid models the geometry. For cascade geo-
metries, the leading and trailing edges are particular areas
where control over the distribution of points is required. Highly
cambered cascades, e.g., turbine nozzles, also require control
over the spacing of points over the remainder of the blade
profile to resolve large gradients that occur there. The most
flexible approach for distributing boundary points, is the use
of an equidistribution scheme with suitably chosen weighting
functions. The use of these methods, however, either requires
very detailed inputs or complex coding logic which is difficult
to generalize. A much simpler approach is to use trigono-
metric functions to distribute the points. Such approaches only
require the specification of one parameter at either end, e.g.,
the grid spacing. The grid stretching along the boundary is
completely determined by the function used in the distribution
scheme. These approaches, therefore, suffer from a lack of

hyperbolic tangent
cosine

geometric series

Fig. 1 Comparison of distribution schemes.

control over the grid spacing away from the end points and
can lead to excessively large grid spacings.

The geometric series distribution scheme provides more
control than the trigonometric and hyperbolic distribution
schemes, but is much easier to control than equidistribution
schemes. The basic approach is illustrated in Fig. 1 for the
distribution of points on one surface of a highly cambered
turbine blade. In this figure, it is seen that the geometric series
distribution scheme provides good leading- and trailing-edge
resolution, while also providing smaller grid spacings at mid-
chord than the trigonometric schemes. The parameters for
this scheme, for a given boundary length and total number
of grid points, are 1) the grid spacing at each end point; 2)
the number of grid segments that have this constant spacing;
3) and the stretching factor (ratio of the length of two con-
secutive grid segments). The distribution procedure first al-
locates the boundary points that are uniformly spaced at the
ends of the boundary, followed by the points where the spac-
ing is increased by the stretching factor. At a certain stage
the point spacing will have increased sufficiently to cover the
remainder of the boundary by equally spaced points. This
approach can easily be used to obtain a fine resolution of the
leading and trailing edges, and directly control the stretching
of the grid spacing. The grid spacing away from the end points
can be controlled by means of the stretching factor. This
ability to control the grid spacing away from the end points
independently from the spacings at the end points, is the main
advantage of the geometric series distribution scheme.

For a given set of parameters, there is obviously a minimum
value for the stretching parameter. This minimum value can
be derived by considering the sequence of grid lengths as a
geometric series

S = a + aa 4- a2a + a3a + ••• 4- a(n~l)a + a(m~

a3b + a2b + ab (1)

where S is the length of the boundary over which n. + m
stretched grid segments (n + m + 1 points) must be distrib-
uted, a and b are the end spacings, and a is the stretching
factor. These parameters are then related as follows:

m — n — [\og(a/b)]/\og(a)

(a - 1)5 + (a + b)
a" ~ [a + a^-n^b\ (2)

Generation of the Algebraic Layers
The use of algebraic layers is the essential distinction be-

tween the grid generation method presented here and the
purely elliptic grid generation schemes. In elliptic grid gen-
eration schemes, the inherent smoothing properties of the
Laplace operator are modified by the source terms of the
Poisson equation to obtain the required grid spacing and or-
thogonality at the boundaries. The strength of the source
terms at a particular location on the boundary is directly re-
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lated to how much the required grid deviates from the
"smoothest" grid, as would be produced by the use of a pure
Laplace operator. Highly clustered grids required by the vis-
cous flow analysis procedures, combined with the effects of
the leading and trailing edges, large stagger, or large camber,
require large source terms to produce an adequate grid. These
source terms, however, adversely affect the numerical sta-
bility of the grid generation scheme, and give rise to local
regions of severe grid skewness. To illustrate this, a grid was
generated for the turbine nozzle shown in Fig. 2. Figure 3
shows the leading- and trailing-edge grids obtained with an
//-grid version of the GRAPE3-10 grid generation code. Note
that the tendency of the grid lines to bundle close to the
leading and trailing edge was not prevented by the use of
source terms. In addition, the smallest grid spacing normal
to the wall for which the elliptic generation scheme converged,
was about 50 times larger than that which would be required
by a low Reynolds number turbulence model.

In the present work, the deficiencies in the elliptic gener-
ation scheme are overcome by the introduction of algebrai-
cally generated layers of grid cells near the boundaries (Fig.
4). By using algebraic methods to generate the grid cells where

Fig. 2 Turbine nozzle grid (every second line shown).

Fig. 4 Nozzle leading- and trailing-edge grids after elliptic generation
and before smoothing of algebraic-elliptic interface.

Fig. 3 Nozzle leading- and trailing-edge grids produced by purely
elliptic generation.

Fig. 5 Nozzle leading- and trailing-edge grids after smoothing of
algebraic-elliptic interface.

most of the stretching occurs (in the direction normal to the
boundary), the elliptic generator is required to maintain a
much larger minimum boundary spacing. In this way, the
strength of the source terms in the Poisson equation are sig-
nificantly reduced, leading to much smoother meshes and
improvements in the numerical stability of the elliptic grid
generation scheme. The enhanced numerical stability of the
elliptic scheme makes it possible to improve the convergence
rate of the elliptic generator even further by employing con-
vergence acceleration techniques.

The algebraically generated layers near the boundaries pro-
vide better control over grid orthogonality near the walls. In
regions of the algebraic layers where grid lines that are or-
thogonal to the boundary would overlap, (e.g., near the lead-
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ing and trailing edges) the grid lines are modified by using
Bezier curves. With the use of algebraic layers, the inability
of the elliptic generator to strictly control orthogonality does
not affect the grid near the walls. The interface between the
algebraic and elliptic regions of the grid, as shown in Fig. 4,
is, however, not acceptable. The grid in these regions is there-
fore smoothed after the generation of the elliptic region. The
requirement for a posteriori smoothing also relaxes the re-
quirements for the algebraic generation procedure, as this
final smoothing also improves this part of the grid. Figure 5
shows the final grid near the leading and trailing edges of the
turbine nozzle used as an example here.

Generalized Minimal Residual Method
The numerical solution of the elliptic grid generation equa-

tions (which are nonlinear) requires the repeated solution of
a set of simultaneous linear equations. For typical grids, the
system of equations is too large to use full matrix inversion.
The generalized nonlinear minimal residual method has been
shown to improve the convergence rate of iterative schemes.11'12

In the present work, the linear form of this method was im-
plemented in the grid generation procedure as an alternative
to traditional methods, such as line relaxation. Numerical
experiments have shown that the nonlinear form of the min-
imal residual method does not perform better than the linear
form in this application, while the nonlinear form incurs sig-
nificant increases in complexity.

The form of the generalized minimal residual method to
be applied to the elliptic grid generation equations will briefly
be derived here to introduce the essential concepts and no-
tation. A detailed development is given by Huang, et al.12

An explicit iterative solution scheme can be cast in a quasi-
time-dependent form. The resulting discretized equation takes
the following form:

(3)

where <j> is the dependent variable, T is the pseudotime vari-
able, L is the discrete approximation of the linear difference
operator and/is the forcing function. The residual is defined
as follows:

Considering the linearity of the operator L, straightforward
Taylor series expansions in r can be applied to obtain expres-
sions for </>T+1 and rr+l. The essence of the generalized form
of the minimal residual method, is to consider the time steps,
AT, in these expansions to be composed of smaller, but not
necessarily equal, time steps. Accordingly, these expansions
can be written

rT+1 = rT

(5)

(6)

The basic premise of the minimum residual method is that
the optimum value for each <^ can be determined from the
condition that the residual at the next time step, rT+1, must
be minimized. To minimize the L2 norm of the residual, the
derivative with respect to each a>, is taken and is set equal to
zero. The following expression is thus obtained:

T-L<(rT)] + S a,y[L'-(rT)]-[L/(rT)]J = 0 (7)

where ft is the solution domain.
Equation (7) describes a system of linear equations that

can be solved for the a)f. These a)f can then be substituted into
Eq. (5) to give the values of <j> that will minimize the residual
at the next time step, in other words, give the optimum con-
vergence rate.

The application of the minimal residual method to the grid
generation equations will now be demonstrated by using only
the jc-field equation. The development for the corresponding
v-equation is similar. Using Sorenson's3 notation, the Jt-equa-
tion is as follows:

(8)

where £ and 17 are the curvilinear coordinates, a, /3, and y
are terms containing first derivatives of x and y, / is the
Jacobian of the transformation, P is the source term for the
Poisson equation for £, Q is the corresponding source term
for 17, and the subscripts are used to indicate partial deriva-
tives.

For the application of the linear form of the minimal re-
sidual method, a, /3, y, and the right side of Eq. (8) are taken
to be independent of the solution, but do not have to be
uniform across the domain. The equivalent time-dependent
form for an explicit iteration scheme for Eq. (8) is

= Axa - - Fx (9)

where

F, = -

with similar expressions for B and C.
By definition, the right side of Eq. (9) is the residual. Using

second-order difference approximations, the linear operator
L, takes the following form:

The L'($) terms in Eq. (7) are obtained by repeated ap-
plication of Eq. (10)

L2(0) = L[L(</>)] (11)

Equations (10) and (11), applied to the residual field, give
the coefficients of the linear system in Eq. (7). The solution
of this linear system is the a)t to be used in Eq. (5), with x
replacing </>. The number of <w/s used has to be chosen by
balancing memory requirements and computational effort.
Numerical experiments indicated that the use of three o>'s, in

a Point Relaxation
° One cj
A Two GO'S
+ Three cj's

10. 20. 30. 40.
EXECUTION TIME

50. 60.

Fig. 6 Comparison of convergence histories of point relaxation and
minimal residual method using 1, 2, or 3 co's.
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Fig. 7 Example of a three-dimensional grid.

general, gives close to the maximum convergence rate, while
requiring storage of only three extra variables per grid point.

Figure 6 demonstrates the improvement in convergence
rate that can be obtained by using the generalized minimal
residual method compared to point relaxation for the gen-
eration of the grid in Fig. 2. The generalized minimal residual
method further obviates the need to experimentally determine
an optimum relaxation factor required by conventional so-
lution techniques.

Generation of Three-Dimensional Grids for Cascades
The well-defined geometry of turbomachine blade rows

permits the generation of three-dimensional grids by mapping
two-dimensional grids onto cylindrical, conical, or axisym-
metric surfaces. Developed onto a flat plane, the generation
of these two-dimensional grids reduces to the familiar two-
dimensional cascade grid case. The methods described above
are employed to generate such two-dimensional blade-to-blade
grids. With fixed values for the various control parameters,
the grid generation scheme will give similar blade-to-blade
grid surfaces at different span wise positions.

A two-dimensional grid need not be generated for each grid
plane that will be required, in fact this would be less likely
to produce a smooth grid.2 Only a few two-dimensional grids
need to be generated. Cubic splines are then used to find
other grid points by interpolation, resulting in a smooth grid.
The geometric series distribution scheme described above is
used to determine the appropriate spanwise spacing of the
blade-to-blade grid surfaces. Figure 7 gives an example of a
grid generated with this procedure.

Grids for Blade Rows with Tip Clearance
Blade rows with tip clearance present a number of addi-

tional grid generation complications. Although the tip gap is
small compared to the major flow passage dimensions, tip
clearance flows can influence about 20% (30% in low-aspect
ratio blade rows) of the blade passage. Therefore, it is im-
portant to adequately resolve the details of the flow through
the tip gap. To obtain adequate spatial resolution for these
geometries (while maintaining compatibility with flow solvers
for simple grids) embedded //-grids, such as used by Moore
and Moore,13 can be generated using the present procedures.
The grid in the computational space is shown in Fig. 8. In the
region "below" the tip gap, the blade profile is mapped into
the rectangular region where dashed lines are shown in Fig.
8. The computational space then has the usual inlet, outlet,
periodic, and solid boundaries encountered with //-grids, but
two "new" solid boundaries are encountered near the leading
and trailing edges. In the tip gap region, the computational

Fig. 8 Computational space for embedded //-grid topology with dashed
lines only used in tip gap (two blade passages shown).

Fig. 9 Leading-edge grid detail for embedded //-grid for a C4 cas-
cade. Grid in tip gap.

Fig. 10 Leading-edge grid detail for embedded //-grid for a C4 cas-
cade. Grid below tip gap.

space includes the dashed lines shown in Fig. 8. No solid
boundaries therefore appear in the blade-to-blade grid sur-
faces. Figures 9 and 10, respectively, show leading-edge de-
tails of the resulting grids above and below the tip gap for a
C4 cascade.

To so-called "mesh singularities" at leading and trailing
edges obtained with standard //-grids do not arise in this grid
topology. Accordingly, the embedded //-grid is particularly
well-suited to thick blades. Additionally, this topology is well-
suited to flow solution algorithms that are not formulated for
block structured grids, because the //-grid connectivity pat-
tern is retained. Also, the clustered region emanating from
the trailing edge, similar to the region ending at the leading
edge shown in Fig. 10, provides improved wake resolution.
For thick blade applications (i.e., turbine blades), utilization
of an embedded //-grid topology may increase the required
number of grid points in the blade-to-blade direction, since
a larger percentage of grid points lie in the vicinity of the
leading and trailing edges, as compared to a standard //-grid.

Comparison of Computations on Embedded //-Grid
and Pinched Tip //-Grid

A three-dimensional Navier-Stokes solver, developed for
turbomachinery //-grids, was modified to accommodate the
embedded //-grid topology. Briefly, the technique employs a
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Fig. 11 Three-dimensional embedded //-grid (every second grid line
shown).

Fig. 12 Embedded //-grid crossplane tip detail at midchord.

Runge-Kutta numerical procedure and a low-Reynolds num-
ber form of the k-e turbulence model. Second-order central
differences are used to discretize the spatial derivatives which
appear in the inviscid and viscous flux vectors of the Navier-
Stokes and turbulence transport equations. For the subsonic
cases considered here, a fourth-difference artificial dissipation
operator is added to the discrete equation set to provide ad-
ditional damping required for stability. An inviscid flux Ja-
cobian eigenvalue scaling and a near-wall local velocity scaling
are applied to the artificial dissipation operators to enhance
stability and to help reduce corruption of physical diffusion
by the artificial dissipation operators in near-wall and near-
wake regions. Further details are available in Kunz and
Lakshminarayana.8

To minimize the modifications required to the code, the
grid points that would normally only be used in the tip gap
(indicated by the dashed lines in Fig. 8), were retained
throughout computational space. The following minor mod-
ifications to the code were then required to accommodate the
embedded //-grid topology:

1) A block preprocessor is called, which applies Dirichlet
boundary conditions along blade surfaces and the blade tip.

2) For stability, local time steps are set to zero at each
iteration for grid points on and within the blades.

3) Another boundary condition routine is called that ap-
plies appropriate boundary conditions for pressure and den-
sity on the blade surfaces and the blade tip.

4) A block postprocessor is used to set the transport vari-
ables within the blades to values which allow convenient graphics
postprocessing.

An extensive experimental investigation into tip clearance
effects in a C4 cascade by Lakshminarayana and Horlock14'15

was chosen to compare the results obtained with a pinched
tip //-grid and an embedded //-grid. This test case was chosen
because the effects of tip clearance could be isolated from
end-wall effects. In the experimental setup, the end-wall effect
was eliminated by splitting the blades of a two-dimensional
cascade at midspan. The equivalent tip gap for each half-blade
row is then half of the span wise gap. In this way the end-wall
boundary is replaced by a symmetry boundary located midway
in the gap between the blade halves. The blade chord was
152 mm and the gap/chord ratio was 4%.

The number of grid lines used for both the grid topologies
is 69 (streamwise) x 59 (pitchwise) x 35 (spanwise). This
gives about 140,000 grid points. In the tip gap, 11 grid lines
from the blade tip to the symmetry plane were used. The
embedded //-grid had 17 grid lines across the blade tip in the
pitchwise direction. Figure 11 shows a three-dimensional view
of the embedded //-grid. The spanwise clustering of the grids
was limited to the tip region as this was the only region of
interest. Figures 9 and 10 show the leading- and trailing-edge
details of the embedded //-grid used. Figures 12 and 13, re-

Fig. 13 Pinched tip //-grid crossplane tip detail at midchord.

Measurements
Embedded H-grid
Pinched H-grid

0.2 0.4 0.6
Fraction of Axial Chord

Fig. 14a Comparison of blade surface pressure coefficients, (p —
An)/(Ptf ?n)» at 13.8% span below blade tip (p, p, q = pressure, density,
velocity magnitude).
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Fig. 14b Comparison of blade surface pressure coefficients, (p -
Pin)/(Ptf ?n)» at 3.45% span below blade tip (p, p, q = pressure, density,
velocity magnitude).

0.2 0.4 0.6 0.8
Fraction of Axial Chord

1.0

Fig. 14c Comparison of blade surface pressure coefficients, (p —
An)/(Ptf?n)» at 0.43% span below blade tip (p, p, q = pressure, density,
velocity magnitude).

spectively, show the grid in a plane at midchord for the embed-
ded //-grid and the pinched tip //-grid:

Three aspects of the solutions for the two grid topologies
were selected for comparison to the experiments, i.e., blade
surface pressure coefficient distributions, outlet dynamic head
distributions, and outlet pitchwise flow angle distributions.
The pressure coefficient distributions were chosen as a mea-
sure of the blade unloading. Both the dynamic pressure and
flow angle serve as indicators of the leakage vortex strength
and location. The outlet flow angle is also an indicator of the
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Fig. 15 Comparison of dynamic pressure contours, (pq2/pqfn) x 100 (p, q = density, velocity magnitude).
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Fig. 16 Comparison of pitchwide flow angle contours, tan~l(v/u) in degrees (M, v = Cartesian axial and pitchwise velocity components).

pressure rise through the blade row and the three-dimen-
sionality of the flow. The computed results are compared to
experimental measurements in Figs. 14-16.

Figure 14 compares the blade surface pressure coefficient
distributions at three Spanwise locations, i.e, 13.8, 3.45, and
0.43% span below the blade tip. The differences between
results obtained with the two grid types are, as expected, the
largest near the blade tip. At 13.8% below the tip, agreement
with the measurements is good and there is little difference
between the results for the two grid topologies. At the location
closest to the tip, the embedded //-grid produces better results
on the pressure side. In both cases, the suction side unloading
near the tip is not accurately captured, probably because only
33 grid points were used in the streamwise direction from the
leading to trailing edge. The embedded //-grid does, however,
exhibit more of the typical downstream shift of the suction
peak near the tip gap.

Figures 15 and 16, respectively, give comparisons of com-
puted and measured contours of local dynamic pressure and
pitchwise flow angle at a measurement plane located half a
chord axially downstream of the trailing edge. Figure 15 in-
dicates that the location of the tip vortex was captured rea-
sonably accurately on both grid topologies, the size of the
vortex is captured more accurately by the embedded //-grid.
Although both grid topologies gave qualitatively good esti-
mations of outlet flow angle distributions, Fig. 16 shows that
the embedded //-grid captured the strength of the vortex
structure better than the pinched tip //-grid. The results ob-
tained with the embedded //-grid exhibit the extent and mag-

nitude of the overturning (28 deg) and underturning (62 deg)
associated with the leakage vortex.

The accurate computation of the vortex location and strength
is essential in assessing the overall aerodynamic efficiency and
determining the three-dimensional, unsteady flowfield that
would enter downstream blade rows. Although the pinched
tip //-grid provides acceptable engineering approximations of
the tip clearance physics for the compressor cascade consid-
ered here, the embedded //-grid topology apparently provides
a somewhat more accurate estimation of the vortex strength
and location. Because the embedded //-grid is inherently more
capable of resolving the flow in the tip gap itself, its use is
more generally applicable.

Concluding Remarks
An efficient technique for the generation of structured grids

has been developed. The use of a combination of algebraic
and elliptic methods makes it possible to obtain smooth grids
while maintaining strict control over grid spacing and or-
thogonality near the domain boundaries. The geometric series
distribution scheme provides more control over the position-
ing of boundary points than hyperbolic tangent or cosine dis-
tribution schemes.

The computational efficiency of the elliptic generation pro-
cedure is greatly enhanced by the application of the minimal
residual method. The use of this method further obviates the
need to experimentally determine the optimum relaxation
factors for the iteration scheme.
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The embedded //-grid topology, which provides good res-
olution of tip clearance effects, has been shown to produce
better results than a //-grid using the thin tip approximation.
The embedded //-grid topology provides improved resolution
of the flow inside the tip clearance itself, while its use requires
only minor modifications of flow solvers developed for con-
ventional //-grids.

Although a pinched tip //-grid provides acceptable engi-
neering approximations of the tip clearance physics, the
embedded //-grid topology apparently provides a more ac-
curate estimation of the vortex strength and location. Because
the embedded //-grid is inherently more capable of resolving
the flow in the tip gap itself, its use is more generally appli-
cable.
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